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a b s t r a c t

The mechanism of excitation of friction-induced vibrations in a system comprising a

flexible annular disk and two rigid surfaces is studied analytically. The surfaces are

pressed together, and the rotating disk slides between them. It is shown that the sliding

friction in the contact between the disk and the surfaces, together with the transverse

contraction in the disk material, set up a feedback between the orthogonal eigenmodes

of the disk corresponding to the same eigenfrequency, thus initializing instability. The

instability mechanism is illustrated by simple analytical considerations. The obtained

results are confirmed by finite-element analysis.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Squeal noise is a widespread phenomenon in engineering systems with a sliding contact. It is commonly acknowledged
that the most probable instability mechanisms to initialize friction-induced vibrations of squeal type are mode-coupling or
mode lock-in.

Numerous publications on the squeal phenomenon can be found in the literature. An overview of the publications on
disk brake squeal is given, for example, by Kinkaid and O’Reilly [1]. A more general review on friction-induced vibrations is
presented by Ibrahim [2]. Other authors [3–7] discuss a minimal model for studying the instability phenomenon. Several
papers [8–13] (as well as many others) are devoted to modelling the contact pairs as multibody systems (MBS) or using
finite-element methods. The effect of mode lock-in is discussed by a number of researchers, with several examples referred
to [14–17]. Despite a wide range of investigations, some features of the investigated phenomenon that are important for the
basic understanding of excitation mechanisms were not revealed, likely because of the complicity of considered systems.

In most applications, such as brake squeal or railway wheel squeal, the mode-coupling is a result of sliding contact
between the elastic disk and elastic body. The elastic properties of both members of the contact pair influence the mode-
coupling and complicate tracing the features of separate parts ‘‘responsible’’ for the instability.

In some engineering applications, the squeal appears due to the sliding contact between the elastic disk and rigid
bodies. An investigation reveals that in such cases, the mode-coupling involves the eigenmodes of the disk itself. Due to
axial symmetry, disks have an unlimited number of pairs of orthogonal eigenmodes; each pair corresponds to the same
eigenfrequency. A sliding friction provides a feedback between these modes, which provokes instability.

One such instability mechanism is considered in the present paper. The prototype of the analysed system is a friction
unit. The system includes a flexible disk made from plastic that moves by sliding between two steel surfaces, which can be
considered as rigid. The disk dynamic deformation is restricted to in-plane vibrations. Due to transverse contraction
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(Poisson’s effect), the vibrations influence the normal force in contact and, consequently, the friction force. The change of
the friction force in turn affects vibrations. This feedback leads to instability.

To illustrate the instability mechanism, a simple analytical model is considered. It is shown that due to the mode-
coupling, the system is unstable in the first approximation; i.e., it has eigenvalues with positive real parts. Furthermore, the
positive real parts are proportional under certain conditions to the friction coefficient and to Poisson’s ratio. A more
detailed finite-element analysis confirms the obtained results and enables to study the influence of system parameters on
instability.

2. Instability mechanism

The analysed system is shown in Fig. 1. The system includes a homogeneous axial symmetric elastic disk and two rigid
surfaces. The surfaces are pressed together, and the disk slides between them. There is a certain normal force in contact
and, due to sliding, a corresponding friction force in the tangential direction.

The surfaces restrict the disk dynamic deformations to in-plane oscillations. The eigenmodes of the in-plane vibrations
include a set of modes with k minima and maxima and 2k node lines ðk ¼ 2;3; . . .Þ in the circumferential direction. Due to
axial symmetry, for each such mode there is an orthogonal mode with the same frequency (we assume that gyroscopic
terms are small and have no influence on eigenfrequencies). The paired eigenmode has the same shape but different
angular orientations, so the minima and maxima of the first mode are in position where the second mode has node lines
(Fig. 2).

To a first approximation these modes represent a set of functions

sin kj; cos kj; k ¼ 2;3; . . . , (1)

where j is an angular coordinate in the polar coordinate system.
We suppose that without vibrations, the normal and tangential friction forces are uniformly (at least, axisymmetrically)

distributed along the disk. Through radial vibrations, the disk has areas with elongation and compression. For example, by
the dynamic deflection of the disk corresponding to the eigenmode presented in Fig. 2a, the areas of elongation and
Elastic disk Rigid surfaces

Fig. 1. Model of the system.
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Fig. 2. Pair of eigenmodes with k ¼ 2: (a) one of these modes, (b) paired mode.
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Fig. 3. Feedback between the paired eigenmodes: (a) areas of elongation and compression, (b) normal forces in contact, (c) tangential friction forces, (d)

additional tangential forces and bending moments, (e) paired mode.
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compression are situated according to Fig. 3a. Because of transverse contraction, this influences the normal force in contact.
The disk will be ‘‘thinner’’ (decrease of the normal force) in the areas with elongation and ‘‘thicker’’ (increase of the force) in
the areas with compression (Fig. 3b).

The alternation of the normal force changes the tangential friction force (Fig. 3c). The friction force decreases in the
areas with elongation and increases in the areas with compression. Subtracting the uniformly distributed initial friction
force, one can calculate an additional tangential force due to dynamic deflection. This force has reverse directions in the
areas with elongation, and compression and builds an in-plane bending moment with a certain sign near maxima and an
opposite sign near minima of deflection (Fig. 3d).

Such distribution of the additional tangential forces affects the dynamic deflection of the disk corresponding to the
paired mode (Fig. 3e). The feedback between the eigenmodes with the same frequencies leads to instability.

Without damping, all modes of the type described by Eq. (1) would be unstable. The sources of instability are:
�
 axial symmetry of the disk, because of which the pairs of modes have the same eigenfrequency;

�
 friction with sliding and transverse contraction. Together they ‘‘set up’’ a feedback between the vibration modes.
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3. Simple analytical model. Linear stability analysis
To investigate the instability mechanism, a simplified model of the system presented in Fig. 1 is analysed. The disk is
considered as an annular beam with a small curvature. The equations of motion of such a system for the in-plane
oscillations without damping and gyroscopic terms can be presented in the form (for example, as in Vibrations in
Engineering [18])
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q4y
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where x ¼ xðj; tÞ, y ¼ yðj; tÞ are the dynamic displacements in radial and tangential directions, respectively, as functions of
the angle j in the polar coordinate system and time t, q ¼ qðj; tÞ, t ¼ tðj; tÞ are the distributed radial and tangential forces,
respectively, m ¼ mðj; tÞ is the distributed in-plane bending moment, r, I are the linear density and the axial moment of
inertia, respectively, of the beam cross-section, E is Young’s modulus, R is the radius.

The tangential force includes the friction force tf and the external load te, which enforce the disk rotation; the radial
force is the part of the friction force caused by radial vibrations of the disk. It is assumed that the friction is of a Coulomb
type and that, due to the rotation of the disk, sliding takes place.

The value of the friction force by sliding depends on the normal force in contact. The direction of the friction force
coincides with the direction of the relative velocity. We suppose that vibration velocities are small compared to the speed
of the rigid body motion of the disk. It is thus possible to neglect the small changes in the direction of the friction force and
assign q ¼ 0.

Due to transverse contraction (Poisson’s effect), the radial vibrations influence the normal force in contact. The
dependence between the distributed normal force and the deformation of the disk is nonlinear. However, as a first
approximation, this dependence can be linearized with the help of contact stiffness Cp. The corresponding friction force
and the in-plane moment resulting from the dynamic deformation of the disk can then be calculated as
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Here, p1;2, yf 1;2; p0, yf 0 represent the pressure and distributed friction forces, respectively, in contact with the upper and
lower surfaces with and without additional deformation due to vibrations, Dh is the change of the beam thickness,
Dh1 ¼ Dh2 is the one-sided ‘‘displacement’’ of the upper and lower surfaces due to deformation, w, � are the curvature and
corresponding deformation, respectively, m, n are the friction coefficient and Poisson’s ratio, respectively, u is the radial
coordinate in the local coordinate system of the beam cross-section, and b;h are the length and the thickness of the cross-
section, respectively (Fig. 4).

Using Eq. (3), we can rewrite the equation of motion as
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The motion of the disk can be divided into two parts: the rigid body motion y0 ¼ y0ðtÞ and the vibration part Dy ¼ Dyðj; tÞ

y ¼ y0 þDy,
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The equation for the vibration part is homogeneous. We search for a solution as a series

Dyðj; tÞ ¼
X1
k¼2

½AkðtÞ sin kjþ BkðtÞ cos kj�. (6)

The index k in the summation starts from k ¼ 2 because k ¼ 0, 1 correspond to the rigid body motion of the disk.
Due to orthogonality of the functions sin kj, cos kj the equations for AkðtÞ, BkðtÞ for different indices can be separated
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The characteristic equations of the system are
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Using the Routh–Hurwitz criterion, the stability condition for the trivial solution of Eq. (8) can be written as
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4
ko0; k ¼ 2;3; . . . . (9)

The inequality equation (9) is never fulfilled; therefore, the system without damping is always unstable.
The eigenvalues of the system can be calculated directly by
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Each component with k ¼ 2;3; . . . has a pair of eigenvalues with a positive real part.
From Eq. (10), it follows that the modes of the type described by Eq. (1) are unstable. The value of real parts depends on

the friction coefficient and on Poisson’s ratio. If m ¼ 0 or n ¼ 0, the system would be stable.
When ak is small, the corresponding eigenvalue can be approximately presented as

l ¼ �1
2mnakok � jok; j ¼

ffiffiffiffiffiffiffi
�1
p

; k ¼ 2;3; . . . . (11)

The value of positive real parts and the ‘‘level’’ of instability are in this case proportional to the friction coefficient and
Poisson’s ratio.

Damping can sufficiently influence the instability. The modes with a small positive real part may become stable (sign
change of the real part); for the other modes, the real part will decrease. However, damping in the systems with sliding
contact, especially with a steel-plastic contact, is a very uncertain variable. It depends on the frequency and amplitude of
oscillations, contact forces, friction parameters and many other, often accidental, factors. Therefore, we choose to consider
the system without damping to investigate the instability mechanism, keeping in mind that in reality, the system
presumably will be distinctively more stable.

The instability conditions derived from Eq. (7) are rather simple, while, due to the axial symmetry of the disk, the terms
o2

k
Ak, o2

k
Bk in the first and second equations include the same frequency parameter o2

k
. The terms ‘‘responsible’’ for the

instability are �mnako2
k

Bk, mnako2
k

Ak. They characterize the coupling between the paired modes. These terms are
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proportional to the friction coefficient and Poisson’s ratio. This confirms the thesis of the previous section that the friction
and transverse contraction induce a feedback between the paired modes, which leads to instability.

There is a certain difference between the squeal phenomenon in the brake system and that in the considered case. In the
brake system, both members of the contact pair, the brake disk and the calliper with pads, are elastic, and the ‘‘interaction’’
between their dynamic properties influences the vibration mechanism.Typically, the system is stable for a low friction
coefficient even without damping, and it becomes unstable only when the friction coefficient exceeds a certain ‘‘boundary
value.’’

The considered system without damping is unstable for any non-zero friction coefficient and Poisson’s ratio. The ‘‘level’’
of instability increases linearly with the growth of these parameters.

The analysed equations contain no gyroscopic terms. Usually, the rotational frequency by squeal of the considered type
is very low compared to the frequency of squeal, and gyroscopic terms have no observable influence on instability.
4. Finite-element analysis

To prove the analytical conclusion about the instability of paired eigenmodes and to study the influence of system
parameters, a finite-element analysis in ANSYS was carried out. The same system (Fig. 1) is considered. The disk is modelled
as a 3-D elastic body; the surfaces are assumed to be rigid. The contacts on the lower and upper surfaces are defined using
ANSYS options ‘‘surface-to-surface contact,’’ ‘‘contact with rigid target’’ and ‘‘behaviour of contact surface standard.’’ By the
definition of contact, the friction coefficient is defined. The stability investigation is based on the results of Q-R-Damped
modal analysis: calculation of the complex eigenvalues of the system taking into account the asymmetry of the elastic
matrix due to friction.

In the previous section, we have studied the simplified system with unmovable rigid surfaces and a rotating disk; the
disk was considered as free. The prototype of the analysed system is a friction unit with the motions of the disk being
restricted. To take into account the realistic boundary conditions in finite-element analysis, we fix the disk in the tangential
direction and move the surfaces to enable sliding. The swap of moving and unmoving parts does not affect the results of the
presented stability analysis because the effects connected with rotation are not considered.

There are some possible variants of the disk fixation. We investigate the uniform fixation in the middle plane of the disk
on the outer radius (Fig. 5). By other types of fixation, for example, by fixation only in some points on the outer radius, the
numerical results could differ from those presented below, but the conclusions about the influence of the friction
coefficient and Poisson’s ratio on instability remain the same.

We present the numerical results for three eigenmodes of the type described by Eq. (1) with k ¼ 2;3;4. Due to the
boundary conditions, the eigenfrequency of the mode with k ¼ 3 for a wide range of parameters is lower than the frequency
of the mode with k ¼ 2.

Computations include three steps:
1.
 Pre-load in normal direction (static analysis). The surfaces are pressed on each other to create initial pressure.

2.
 Sliding in the tangential (rotational) direction (static analysis). A certain displacement in the tangential direction is

defined for both rigid surfaces. The 3-D disk is fixed in the tangential direction on its outer radius. The displacement
should be sufficiently large to provide the status of both contacts as ‘‘sliding,’’ but not so large as to avoid convergence
problems. To enable the calculation of the asymmetrical elastic matrix, the ANSYS command ‘‘nropt,unsym’’ should be
applied.
zoom

fixed in tangential direction

Fig. 5. Boundary conditions for the disk.



ARTICLE IN PRESS

Fig. 6. Q-R Damped modal analysis: influence of the friction coefficient m. Disk material: plastic, Poisson’s ratio n ¼ 0:4. (a) Eigenfrequencies vs. friction

coefficient, (b) real parts vs. friction coefficient.

Fig. 7. Q-R Damped modal analysis: influence of Poisson’s ratio n. Friction coefficient m ¼ 0:3. (a) Eigenfrequencies vs. Poisson’s ratio, (b) real parts vs.

Poisson’s ratio.
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3.
 Q-R-Damped modal analysis with the asymmetrical elastic matrix obtained by step 2. If some eigenvalues have a
positive real part, corresponding eigenmodes are considered as ‘‘unstable.’’
The modal analysis is also performed without damping. Such an approach enables to estimate the ‘‘inclination’’ to
instability for different eigenmodes by comparing the values of real parts.

The finite-element computations confirm in principle the analytical conclusions. All eigenmodes of the type described
by Eq. (1) without damping are unstable: they have eigenvalues with a positive real part.

The influence of the friction coefficient is shown in Fig. 6. If m ¼ 0, the system will be stable (has no eigenvalues with a
positive real part). The rise of friction coefficient leads to the growth of both real and imaginary parts of eigenvalues. The
system becomes noticeably more rigid (increase of eigenfrequencies) and more potentially unstable. The growth of positive
real parts is almost linear, which corroborates the results of Section 3.

The variation of Poisson’s ratio (Fig. 7) also confirms the prediction of the previous section: with an increase of n,
positive real parts of eigenvalues increase nearly linearly. If one found a hypothetical material with n ¼ 0, the system would
be stable. The influence of Poisson’s ratio on the eigenfrequencies is minor.

The increase of the initial pressure leads to the growth of eigenfrequencies. The real parts of eigenvalues decrease
slightly (Fig. 8).

The influence of geometrical parameters (thickness, width and radius of the disk) is investigated in Figs. 9, 10 and 11,
respectively. One can see that the variation of thickness and width can sufficiently change both real and imaginary parts of
eigenvalues. Furthermore, the ‘‘behaviour’’ of eigenvalues is different for the eigenmodes with different k. It is not possible
to make general predictions about the optimal choice of geometrical parameters; in each concrete case, a numerical
investigation should be carried out.
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Fig. 8. Q-R Damped modal analysis: influence of the initial pressure p0. Here, p0b is the ‘‘basis’’ value of the initial pressure used in calculations in Figs. 6

and 7; m ¼ 0:3, n ¼ 0:4. (a) Eigenfrequencies vs. dimensionless initial pressure, (b) real parts vs. dimensionless initial pressure.

Fig. 9. Q-R Damped modal analysis: influence of the disk thickness h. Here, hb is the ‘‘basis’’ thickness used in calculations in Figs. 6 and 7; m ¼ 0:3,

n ¼ 0:4. (a) Eigenfrequencies vs. dimensionless thickness of the disk, (b) real parts vs. dimensionless thickness of the disk.

Fig. 10. Q-R Damped modal analysis: influence of the disk width b. Here, bb is the ‘‘basis’’ width used in calculations in Figs. 6 and 7; m ¼ 0:3, n ¼ 0:4. (a)

Eigenfrequencies vs. dimensionless width of the disk, (b) real parts vs. dimensionless width of the disk.
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The most important result of the finite-element analysis is the conclusion that all eigenmodes of the type described by
Eq. (1) without damping are unstable and that the values of positive real parts depend almost linearly on the friction
coefficient and Poisson’s ratio.
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Fig. 11. Q-R Damped modal analysis: influence of the disk radius R. Here, Rb is the ‘‘basis’’ radius used in calculations in Figs. 6 and 7; m ¼ 0:3, n ¼ 0:4. (a)

Eigenfrequencies vs. dimensionless radius of the disk, (b) real parts vs. dimensionless radius of the disk.
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To estimate the influence of the rotational speed, some computations were carried out by applying the rotational
velocity effect (ANSYS parameter Omega) and gyroscopic terms (Ansys parameter Coriolis) to the disk. The comparison of
finite-element analysis results with and without these terms did not reveal any distinguishable difference.

In the case when all analysed eigenmodes have positive real parts, the introduction of damping causes a calculable
effect because the models of damping available by FE Q-R-Damped modal analysis are rather simple. For example, if we
introduced a Rayleigh damping proportional to the matrix of mass (the so-called alpha-damping, ANSYS parameter
ALPHAD), all real parts of the eigenvalues would decrease by the same value. A similar situation occurs with the second
option, Rayleigh damping proportional to the matrix of stiffness (beta-damping, BETAD).
5. Conclusion

A system consisting of a homogeneous elastic annular disk sliding between two rigid surfaces is studied analytically. It
is shown that the transverse Poisson’s contraction associated with the in-plane dynamic deformations of the disk sets up a
feedback between the orthogonal eigenmodes of the disk corresponding to the same eigenfrequency, which can therefore
provoke instability. The factors responsible for the instability are the axial symmetry of the disk, the sliding friction and the
transverse (Poisson’s) contraction.

The system without damping is unstable for any non-zero friction coefficient and Poisson’s ratio. The tendency towards
instability increases linearly with the growth of these parameters.
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